111_007 PKCS_RSA-AKAP

Koliokviumas: Lapkric¢io 6d., 13:30, 103f aud., dalyvavimas gyvai.
https://imimsociety.net/en/cryptography/29-diffie-hellman-key-agreement-protocol.html
https://imimsociety.net/en/cryptography/32-man-in-the-middle-attack.html
https://imimsociety.net/en/cryptography/34-textbook-rsa-signature.html
https://imimsociety.net/en/cryptography/35-textbook-rsa-encryption.html
https://imimsociety.net/en/cryptography/41-authentictaed-diffie-hellman-dh-key-agreement-protocol-kap.html

KD
http://crypto.fmf.ktu.lt/xdownload/

« Course Work-Example 7z
» Course Work-Requirements-2022 doc

Cryptography:
Information confidentiality, integrity, authenticity
person identification

Symmetric cryptography Asymmetric cryptography

Asymmetric encryption

Symmetric encryption : .
E-signature - Public Key Infrastructure - PKI

H-functions, Message digest

HMAC H-Message Authentication Code E—mo.ney, cryptocurrencies, blockchain
-voting

Digital Rights Management - DRM
Etc.

Symmetric - Secret Key Encryption

< E ! ’r;ﬁ! '
=4 @ Plaintext U Ciphertext Plaintext @
§ > > E il > ;i

Sender Encrypt Decrypt Recipient

AES - 128,192, 256

E

Same key is used 10 encrypt
and decrypt message

e
N

Shared Secret Key

111_007 PKCS_RSA-AKAP Page 1


https://imimsociety.net/en/cryptography/29-diffie-hellman-key-agreement-protocol.html
https://imimsociety.net/en/cryptography/32-man-in-the-middle-attack.html
https://imimsociety.net/en/cryptography/34-textbook-rsa-signature.html
https://imimsociety.net/en/cryptography/35-textbook-rsa-encryption.html
https://imimsociety.net/en/cryptography/41-authentictaed-diffie-hellman-dh-key-agreement-protocol-kap.html
http://crypto.fmf.ktu.lt/xdownload/

Asymmetric - Public Key Cryptography

Principles of Public Key Cryptography

Instead of using single symmetric key shared in advance by the parties for realization of symmetric
cryptography, asymmetric cryptography uses two mathematically related keys named as private key
and public key we denote by PrK and PuK respectively.

PrK is a secret key owned personally by every user of cryptosystem and must be kept secretly. Due to
the great importance of PrK secrecy for information security we labeled it in red color. PuK is a non-
secret personal key and it is known for every user of cryptosystem and therefore we labeled it by
green color. The loss of PrK causes a dramatic consequences comparable with those as losing
password or pin code. This means that cryptographic identity of the user is lost. Then, for example, if
user has no copy of PrK he get no access to his bank account. Moreover his cryptocurrencies are lost
forever. If PrK is got into the wrong hands, e.g. into adversary hands, then it reveals a way to
impersonate the user. Since user’s PUK is known for everybody then adversary knows his key pair
(PrK, Puk) and can forge his Digital Signature, decrypt messages, get access to the data available to
the user (bank account or cryptocurrency account) and etc.

Let function relating key pair (PrK, Puk) be F. Then in most cases of our study (if not declared
opposite) this relation is expressed in the following way:

PuK=F(PrK).

In open cryptography according to Kerchoff principle function F must be known to all users of
cryptosystem while security is achieved by secrecy of cryptographic keys. To be more precise to
compute PuK using function F it must be defined using some parameters named as public parameters
we denote by PP and color in blue that should be defined at the first step of cryptosystem creation.
Since we will start from the cryptosystems based on discrete exponent function then these public
parameters are

PP =(p, 9).
Notice that relation represents very important cause and consequence relation we name as the direct
relation: when given PrK we compute PuK.

Let us imagine that for given F we can find the inverse relation to compute PrK when PuK is given.
Abstractly this relation can be represented by the inverse function F. Then

PrK=F1(PuK).

In this case the secrecy of PrK is lost with all negative consequences above. To avoid these
undesirable consequences function F must be one-way function — OWF. In this case informally OWF
is defined in the following way:

1. The computation of its direct value PuK when PrK and F in are given is effective.

2. The computation of its inverse value PrK when PuK and F are given is infeasible, meaning that to
find F is infeasible.

The one-wayness of F allow us to relate person with his/her PrK through the PuK. If F is 1-to-1, then
the pair (PrK, Puk) is unique. So PrK could be reckoned as a unique secret parameter associated with
certain person. This person can declare the possession or PrK by sharing his/her PuK as his public
parameter related with PrK and and at the same time not revealing PrK.

So, every user in asymmetric cryptography possesses key pair (PrK, PuK). Therefore, cryptosystems
based on asymmetric cryptography are named as Public Key CryptoSystems (PKCS).

We will consider the same two traditional (canonical) actors in our study, namely Alice and Bob.

Everybody is having the corresponding key pair (PrKa, PuKa) and (PrKg, PuKg) and are exchanging
with their public keys using open communication channel as indicated in figure below.
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Asymmetric Key Generation
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The "Hash-and-Sign" Paradigm.

The hashed RSA signature scheme can be viewed as an attempt to prevent certain attacks on the
textbook RSA signature scheme.
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encryption.
2.2.Forging signatures.



Necessity of probabilistic encryption.

Encrypting a message with textbook RSA always yields the same ciphertext, and so we
actually obtain that any deterministic scheme must be insecure for multiple encryptions.
RSA padded encryption

PKCS # 1 v1.5. A widely-used and standardized encryption scheme, RSA Laboratories Public-Key
Cryptography Standard (PKCS) # 1 version 1.5, utilizes what is essentially padded RSA encryption.

Hardness of factoring assumption serves as a useful bacground to the secure construction based
on RSA padding.
One simple idea is to randomly pad the message before encrypting.
For a public key PuK = (n, e) of the usual form, let k denote the length of n in bytes; i.e.,
k is the integer satisfying 281 < n < 2 8k,
Messages m to be encrypted are assumed to be a multiple of 8 bits long, and can have length up
to k - 11 bytes.
Encryption of a message m that is D-bytes long is computed as

¢ = (00000000| |00000010| | r| |00000000| | M) mod n //concatenation
where ris a randomly-generated string of (k - D - 3) bytes, with none of these bytes equal to 0.

Common modulus attack Il. The attack just shown allows any employee to

decrypt messages sent to any other employee.

This still leaves the possibility that sharing the modulus n is fine as long as all
employees trust each other (or, alternatively, as long as confidentiality need only be
preserved against outsiders but not against other members of the company) .

Here we show a scenario indicating that sharing a modulus is still a bad idea,. at least
when textbook RSA encryption is used.

Say the same message m is encrypted and sent to two different (known)

employees with public keys (n, e1) and (n, e2) where el # e2 .

Assume further that gcd(el,e2)=1.

Then an eavesdropper sees the two ciphertexts c1 = mel mod n and c2 = me2 mod
n.
Since gcd(el, e2 ) =1, there exist integers X, Y such that X(el) + Y(e2) = 1.

Proposition 7.2. Moreover, given the public exponents e; and e it is possible
to efficiently compute X and Y using the extended Euclidean algorithm (see

Appendix B.1.2). We claim that m = [c¢i* - ¢} mod N], which can easily be
calculated. This is true because
cf -5 =mFrm¥? = mXatYer — ! = mmod N.

Thus it is much better to share the complete key than part of it.
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This example and those preceding it should serve as a warning to only ever
use RSA (and any other cryptographic scheme) in the exact way that it is specified.
Even minor and seemingly harmless modifications can open the door to attack.

RSA Textbook signature

Forging a signature on an arbitrary message. A more damaging attack
on the textbook RSA: -signature scheme requires the adversary to obtain “two
signatures from the signer, but allows the adversary to output a forgery on
any message of the adversary’s choice. Say the adversary wants to forge a
signature on the message m € Z}, with respect to the public key pk = (N, e).
The adversary chooses a random m; € Z%, sets my := [m/m; mod N], and
then obtains signatures o7 and o2 on m; and ms, respectively. We claim that
o := [o1 - 02 mod NJ is a valid signature on m. This is because

0° = (01-02)° = (m$ -m%)® = m§% - m5? = mymy =m mod N,
using the fact that o, 02 are valid signatures on m;, mg. This constitutes a
forgery since m is not equal to m; or my (except with negligible probability).

Being able to forge a signature on an arbitrary message is clearly devas-
tating. Nevertheless, one might argue that this attack is unrealistic since an
adversary will never be able to convince a signer to sign the exact messages
m; and mo as needed for the above attack. Once again, this is irrelevant as far
as Definition 12.2 is concerned. Furthermore, it is dangerous to make assump-
tions about what messages the signer will or will not be willing to sign. For

The "Hash-and-Sign" Paradigm.

The hashed RSA signature scheme can be viewed as an attempt to prevent
certain attacks on the textbook RSA signature scheme.

We omit considerations of these attacks.

But nevertheless, in general, it is not proved this signature to be secure.

RSA offers another advantage relative to textbook RSA: it can be used to sign
arbitrary-length bit-strings.

In any case the randomization of signature should be implemented.
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